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1.0 INTRODUCTION

At the urging of Jean Thi~baux and David Parrish of the

National Meteorological Center, I recently extended some simula-

tions reported on previously (see Franke, 1985) to include an

idea advanced by Bratseth (1986). The scheme proposed there is

an iterative scheme for objective analysis, similar to successive

correction methods (SCM) (see Cressman (1959)), with the weights

chosen in such a way that the iteration converges to the results

of a statistical interpolation (SI) scheme (see Gandin (1963)).

This would appear to be attractive because of the ease of ap-

plying SCM and the skill of SI. The question that remains is

whether or not the proposed scheme converges rapidly enough in a

practical setting to justify its use. The simulations described

in this report were close to realistic. Further investigation of

properties of the scheme give information about why the method

performs as it does in the simulations and whether similar re-

sults can be expected in practice.

The second section reviews the ideas of Bratseth, and dis-

cusses a generalization of the scheme within the context of

iterative methods for solving linear systems. In the third

section the results of the simulations corresponding to those

performed in Franke (1985) are presented with some conclusions.

Section 4 gives suggestions for further investigation.

2.0 THE BRATSETH METHOD "

The basis for the method flows from the following ideas.

i
Let observation -oints x , i=l,...,n be given, and let c repre-

sent the spatial covariance between the background plus observa- . I
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tion errors at points x i and x j , while c. represents the cova-

riance between the background errors at x i and x, the latter an

arbitrary point at which the background error is to be estimated.

Then the weights p., j=l,...,n, for the SI correction at point x

are the solution of the equations

n
(1) Z c ijpj = Cix ,  i=l,...,nj=1

with the analyzed values being given by

(la) FA = F P + n" p.(FO-F.)x N j l

A P 0
Here F i F, and Fi represent the analyzed, predicted (back-

ground) , and observed values at point x i , respectively, while FA
x

and F P represent analyzed and predicted values at x.
x

Using SCM with the spatial covariance function as the weight

function yields the iteration

n

AA n 0 A(2) FA(k+l) = F (k) + F a (FOCk)-F W)x x xi J Jj=l

where a is c xj/Mxj for some normalizing factor Mxi, which is

typically taken to be

n
? c.xj

j=l

Bratseth's observation is: if equation (2) is used to evaluate

Athe F (k), instead of interpolating from the grid, then the2

iteration given by (2) will converge (when it converges) to the

solution of (1), provided the M -'s are chosen independent of x.
NJ

This observation (in a limited sense), was also made by Franke

and Gordon (1983), where the M "s were all taken to be the same.
XT

. The key~ to analyzing the behavior of the iteration lies in

a . . . . .. . . . . a
- -- - - - - - - - -
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the iteration at the observation points, since the grid point

values (while being the real interest) have no effect on conver-

gence. In matrix form, the iteration for analyzed values at the

observation points has the form

(4) F A(k+I) = F A(k) + A(F (k)-FA(k))

where A is the matrix (a. ./M .), F is the vector of observed

values and FA(k) is the vector of analyzed values (kth iteration)

at the observation points. The predicted values at the observa-

FP
tion points (obtained by interpolation from the grid), F , are

used as the initial iterate, FA(o). Since the values of M are
x.5

to be chosen independent of x, denote them by M . Then A is of]

the form A = CM, where C = (c. .) and M = diag(M ).

Bratseth suggests (in our context of independent observation

errors)
n

M. = Ic..I
j=l

The effect of this set of M 's will be to ensure that the matrix
2

has all (absolute) column sums equal to one. This shows that all

eigenvalues of A are bounded by one, and since A is positive

definite, all eigenvalues are between zero and one. The itera-

tion matrix for the scheme is I-A, which is then seen to have all

eigenvalues between zero and one, as well, ensuring convergence

of the scheme. The rate of convergence is proportional to the

largest egenvalue of I-A, therefore when A has small eigenvalues

the convergence is slow.

Replacing the matrix A by A/ (equivalently, replacing the

M by aM ) will result in a convergent scheme provided " lies

within certain limits as noted by Bratseth in another context,

%I
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0<X-1<2. Let x represent the eigenvalues of A, in decreasing

order. Then, values of a greater than one will cause slow con-

vergence since the largest eigenvalue of I-A/" will be 1-X /a>1-n

n. Thus, to minimize the largest eigenvalue of I-A/a, one

should take a to satisfy a = (X n +x 1)/2. Because of the unknown

properties of the associated eigenvectors relative to the error

in the initial iterate, such a value will probably not be optimum

for a scheme which does not iterate to convergence. In any case,

computation of 1 and Xn is not feasible in practice. I also

-1
note that as a parameter, a behaves much the same way as an

over-relaxation factor such as used in Gauss-Seidel and other

iterative schemes for linear systems of equations.

3.0 SIMULATION RESULTS

The basic simulations performed for a variety of objective

analysis schemes in Franke (1985) (see that paper for details of

the simulations) were conducted for several variations of the

Bratseth method. Initial guesses at the analyzed values were

obtained by piecewise cubic interpolation of predicted values

from the grid to the observation points. The parameters for the

timulations were: 500 mb height field (see Koehler, 1979),

standard deviations of the error in the predicted and observed

values are 30 m and 10 m, respectively, and the assumed (and

true) correlation +unction for the predicted error was the iso-

tropic negative squared exponential, exp(-(d/l())), where d is

distance in degrees. The results for the Bratseth scheme using

., 5, and It iterations, with Ex = 1.0, 0.75, 0.65, and 0.5 are

given in Table 1.

4



No. It. ( = 1.0 a = 0.75 a = 0.65 = 0.55

3 10.48 9.34 9.27 12.75
10.24(2.27) 9.13(1.97) 9.05(2.02) 11.91(4.57)

5 8.82 8.04 7.77 9.80
8.63(1.80) 7.89(1.59) 7.62(1.53) 9.33(2.9wI

10 7.33 6.91 6.75 7.02
7.20(1.40) 6.79(1.31) 6.63(1.28) 6.88(1.39)

D (=>I) 6.09 6.09 6.09 6.09
5.98(1.19) 5.98(1.19) 5.98(1.19) 5.98(1.19)

Table 1: RMS analysis errors for Bratseth's scheme. This table
corresponds to entries in Table 2, PW cubic column in Franke
(1985). Entries are: RMS analysis error

Mean RMS error (Std. Dev.)

The table shows that (in this context) the scheme is less

skillful than Barnes' scheme for three iterations, while

additional iterations and smaller values of a yield a scheme

which is more skillful than Barnes' scheme. If the iterations

are continued, the scheme converges to SI (01 here, since the

actual statistical properties have been assumed), however it is

doubtful that more than 10 iterations would be cost effective in

practice. Use of smaller values of " are seen to be quite useful

for the early iterations. In this case the smallest elgenvalue

of A is X 0.01, whereas xl = 1, which indicates the optimumn1

value of " is close to 0.5 However, RMS errors for a few

iterations tend to be larger when c = 0.55, probably because the

decomposition of the error in terms of eigenvectors results in

larger components corresponding to Xl, which is slowly damped if

c- is rear its optimum value. Thus, the optimum value of a for a

qiven number of iterations is somewhere between the theoretical

optimum and cx=1. Note that for 3 iterations, the RMS errors with

5
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cc = 0.75 and a = 0.65 are nearly the same, while for a = 0.55 the

error is larger. As the iteration count increases, faster

convergence rates occur for the smaller values of a.

Table 2 shows something of the the sensitivity of the scheme

to misspecification of the ratio between prediction and

observation errors. The set of realizations was different here

than for those that made up Table 1, which accounts for column 1

of Table 2 differing from column 3 of Table 1. The rate of

convergence seems to be improved slightly here, although the

performance of SI is deteriorated.

No. It. a = 0.65 rglie=20 rolie=5

3 9.88 9.59 9.69
9.67(2.05) 9.34(2.21) 9.50(1.93)

5 8.37 8.26 8.21
8.21(1.65) 8.05(1.86) 8.04(1.67)

10 7.30 7.24 7.12
7.16(1.45) 7.07(1.57) 6.97(1.44)

w(=>SI) 6.40 6.47 6.88
6.27(1.30) 6.32(1.35) 6.74(1.38)

Table 2: RMS analysis errors for Bratseth's scheme. This table
corresponds in part to Figure 13, Franke (1985). Nominal values
of r and r were 30 m and 10 m, respectively, while the analysis
was 4iven 28 m and 5 m, respectively for columns 2 and 3.
Entries are: RMS analysis error

Mean RMS error (Std. Dev.).

Based on these simulations, it is not clear that the method

is superior to a highly tuned version of Barnes scheme, for a

,eAsonable number of iterations. Sensitivity to misspecification

of the correlation function %.as not investigated, but this can be

expected to be similar to that of statistical interpolation since

the scheme converges to the SI approximation.

6
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4.0 FURTHER THOUGHTS

The analysis of iterative methods for linear systems reveals

that the components of the error vector corresponding to large

eigenvalues of the iteration matrix are most slowly damped. The

large eigenvalues of I-A/a correspond to the small eigenvalues of

A in the present discussion. The eigenvectors corresponding to

small eigenvalues tend to have "spikes" at a few of the

observation points. Because of this it is possible that the

errors left after a finite number of iterations correspond to

components which will be damped out during the initialization

phase, prior to beginning the numerical integration of the

dynamical equations in NWP. Thus, it is possible that in a

practical setting the performance of the Bratseth scheme may be

much better than indicated by the raw RMS errors shown in Table

1. Whether or not this is the case will probably be quite

difficult to determine without commitment of significant

resources to conduct full scale verification runs.
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